ACVRL1

activin A receptor like type 1

Normal Function

Health Conditions Related to Genetic Changes

Hereditary hemorrhagic telangiectasia

Dozens of mutations in the ACVRL1 gene have been found to cause hereditary hemorrhagic telangiectasia type 2. Many ACVRL1 gene mutations substitute one protein building block (amino acid) for another amino acid in the ACVRL1 protein, which impairs the protein's function. Other mutations prevent production of the ACVRL1 protein or result in an abnormally small protein that cannot function. The shortage of functional ACVRL1 protein appears to interfere with the development of boundaries between arteries and veins, resulting in the signs and symptoms of hereditary hemorrhagic telangiectasia type 2.

More About This Health Condition

Related Conditions

Hereditary hemorrhagic telangiectasiaPulmonary arterial hypertensionOther disorders

Health Conditions Related to Genetic Changes

Dozens of mutations in the ACVRL1 gene have been found to cause hereditary hemorrhagic telangiectasia type 2. Many ACVRL1 gene mutations substitute one protein building block (amino acid) for another amino acid in the ACVRL1 protein, which impairs the protein's function. Other mutations prevent production of the ACVRL1 protein or result in an abnormally small protein that cannot function. The shortage of functional ACVRL1 protein appears to interfere with the development of boundaries between arteries and veins, resulting in the signs and symptoms of hereditary hemorrhagic telangiectasia type 2.

MedlinePlus Genetics provides information about Pulmonary arterial hypertension

A common genetic variation (polymorphism) in the ACVRL1 gene has been found to appear more often in people who develop arteriovenous malformations in the brain, but who do not have other signs or symptoms of hereditary hemorrhagic telangiectasia, than in the general population. The polymorphism replaces a particular DNA building block (nucleotide) called adenine with the nucleotide guanine (written as IVS3-35 A>G). This genetic variation may affect the development of blood vessels in the brain, resulting in an increased risk of arteriovenous malformations.