ATP7A

ATPase copper transporting alpha

Normal Function

Health Conditions Related to Genetic Changes

Cutis laxa

Several mutations in the ATP7A gene are responsible for a condition called occipital horn syndrome or X-linked cutis laxa, which is considered a mild form of Menkes syndrome (described below). Occipital horn syndrome is characterized by loose and sagging skin, wedge-shaped calcium deposits in a bone at the base of the skull (the occipital bone), coarse hair, and loose joints.

Most of the mutations that cause occipital horn syndrome reduce but do not eliminate the production of the ATP7A protein. A shortage of this protein impairs the absorption of copper from food and prevents its normal distribution to cells throughout the body. The decreased supply of copper can reduce the activity of numerous copper-containing enzymes, affecting the structure and function of bone, skin, hair, blood vessels, and the nervous system. The reduced activity of these enzymes underlies the characteristic features of occipital horn syndrome.

More About This Health Condition

Related Conditions

Cutis laxaMenkes syndromeCharcot-Marie-Tooth disease

Health Conditions Related to Genetic Changes

Several mutations in the ATP7A gene are responsible for a condition called occipital horn syndrome or X-linked cutis laxa, which is considered a mild form of Menkes syndrome (described below). Occipital horn syndrome is characterized by loose and sagging skin, wedge-shaped calcium deposits in a bone at the base of the skull (the occipital bone), coarse hair, and loose joints.

Most of the mutations that cause occipital horn syndrome reduce but do not eliminate the production of the ATP7A protein. A shortage of this protein impairs the absorption of copper from food and prevents its normal distribution to cells throughout the body. The decreased supply of copper can reduce the activity of numerous copper-containing enzymes, affecting the structure and function of bone, skin, hair, blood vessels, and the nervous system. The reduced activity of these enzymes underlies the characteristic features of occipital horn syndrome.

Researchers have identified more than 150 mutations in the ATP7A gene that cause Menkes syndrome. Many of these mutations delete part of the gene and likely result in a shortened ATP7A protein. Other mutations insert additional DNA building blocks (nucleotides) into the gene or change single nucleotides. All of these mutations prevent the production of functional ATP7A protein. As a result, the absorption of copper from food is impaired, and copper is not supplied to certain enzymes. The abnormal protein may get stuck in the cell membrane and become unable to shuttle back and forth from the Golgi apparatus.

The disrupted activity of the ATP7A protein causes copper to be poorly distributed to cells in the body. Copper accumulates in some tissues, such as the small intestine and kidneys, while the brain and other tissues have unusually low levels. The decreased supply of copper can reduce the activity of numerous copper-containing enzymes, affecting the structure and function of bone, skin, hair, blood vessels, and the nervous system. The signs and symptoms of Menkes syndrome are caused by the reduced activity of these copper-containing enzymes.

MedlinePlus Genetics provides information about Charcot-Marie-Tooth disease