CNGB3

cyclic nucleotide gated channel subunit beta 3

Normal Function

Health Conditions Related to Genetic Changes

Achromatopsia

More than 40 mutations in the CNGB3 gene have been found to cause the vision disorder achromatopsia. These mutations cause 50 to 70 percent of cases of complete achromatopsia, a form of the disorder characterized by a total lack of color vision and other vision problems that are present from early infancy. Worldwide, the most common mutation that causes this condition deletes a single DNA building block (base pair) from the CNGB3 gene. This mutation can be written as 1148delC.

Complete achromatopsia occurs frequently in Pingelapese islanders, who live on one of the Eastern Caroline Islands of Micronesia. Among the Pingelapese, this condition results from a mutation that changes a single protein building block (amino acid) in the beta subunit. This mutation replaces the amino acid serine with the amino acid phenylalanine at position 435 in the protein (written as Ser435Phe or S435F).

Most CNGB3 gene mutations prevent the production of any functional beta subunit, which alters the structure of CNG channels. The resulting channels are nonfunctional and prevent cones from carrying out phototransduction. Researchers speculate that the defective channels allow a huge influx of cations into cones, which ultimately causes these cells to self-destruct (undergo apoptosis). A loss of cone function underlies the lack of color vision and other vision problems in people with complete achromatopsia.

Because these CNG channels are specific to cones, rods are generally unaffected by this disorder.

More About This Health Condition

Related Conditions

AchromatopsiaCone-rod dystrophyOther disorders

Health Conditions Related to Genetic Changes

More than 40 mutations in the CNGB3 gene have been found to cause the vision disorder achromatopsia. These mutations cause 50 to 70 percent of cases of complete achromatopsia, a form of the disorder characterized by a total lack of color vision and other vision problems that are present from early infancy. Worldwide, the most common mutation that causes this condition deletes a single DNA building block (base pair) from the CNGB3 gene. This mutation can be written as 1148delC.

Complete achromatopsia occurs frequently in Pingelapese islanders, who live on one of the Eastern Caroline Islands of Micronesia. Among the Pingelapese, this condition results from a mutation that changes a single protein building block (amino acid) in the beta subunit. This mutation replaces the amino acid serine with the amino acid phenylalanine at position 435 in the protein (written as Ser435Phe or S435F).

Most CNGB3 gene mutations prevent the production of any functional beta subunit, which alters the structure of CNG channels. The resulting channels are nonfunctional and prevent cones from carrying out phototransduction. Researchers speculate that the defective channels allow a huge influx of cations into cones, which ultimately causes these cells to self-destruct (undergo apoptosis). A loss of cone function underlies the lack of color vision and other vision problems in people with complete achromatopsia.

Because these CNG channels are specific to cones, rods are generally unaffected by this disorder.

MedlinePlus Genetics provides information about Cone-rod dystrophy

Mutations in the CNGB3 gene have also been identified in a small percentage of cases of progressive cone dystrophy. Like achromatopsia (described above), this condition affects the function of cones in the retina. However, unlike achromatopsia, progressive cone dystrophy is associated with cones that work normally at birth but begin to malfunction in childhood or adolescence. Over time, people with progressive cone dystrophy develop increasing blurriness and loss of color vision. It is unclear why some CNGB3 gene mutations cause achromatopsia and others result in progressive cone dystrophy.