ETHE1
ETHE1 persulfide dioxygenase
Normal Function
Health Conditions Related to Genetic Changes
Ethylmalonic encephalopathy
More than 30 mutations in the ETHE1 gene have been identified in people with ethylmalonic encephalopathy. This rare condition affects many parts of the body, including the nervous system, blood vessels, and intestines. Signs and symptoms include delayed development, abnormal movements, rashes of tiny red spots under the skin (petechiae), blue discoloration of the hands and feet (acrocyanosis), and chronic diarrhea.
Most of the mutations that cause ethylmalonic encephalopathy lead to the production of nonfunctional versions of the ETHE1 enzyme or prevent cells from making any of this enzyme. A shortage of functional enzyme prevents sulfide from being broken down normally, allowing this molecule to accumulate in cells. The buildup of sulfide inhibits the activity of COX, which disrupts mitochondrial energy production and damages tissues and organs throughout the body. Researchers believe that the effects of excess sulfide in the brain, muscles, blood vessels, and lining of the intestines underlie most of the major features of ethylmalonic encephalopathy.
More About This Health ConditionRelated Conditions
Ethylmalonic encephalopathyLeigh syndrome
Health Conditions Related to Genetic Changes
More than 30 mutations in the ETHE1 gene have been identified in people with ethylmalonic encephalopathy. This rare condition affects many parts of the body, including the nervous system, blood vessels, and intestines. Signs and symptoms include delayed development, abnormal movements, rashes of tiny red spots under the skin (petechiae), blue discoloration of the hands and feet (acrocyanosis), and chronic diarrhea.
Most of the mutations that cause ethylmalonic encephalopathy lead to the production of nonfunctional versions of the ETHE1 enzyme or prevent cells from making any of this enzyme. A shortage of functional enzyme prevents sulfide from being broken down normally, allowing this molecule to accumulate in cells. The buildup of sulfide inhibits the activity of COX, which disrupts mitochondrial energy production and damages tissues and organs throughout the body. Researchers believe that the effects of excess sulfide in the brain, muscles, blood vessels, and lining of the intestines underlie most of the major features of ethylmalonic encephalopathy.
MedlinePlus Genetics provides information about Leigh syndrome