IFT43
intraflagellar transport 43
Normal Function
Health Conditions Related to Genetic Changes
Cranioectodermal dysplasia
A mutation in the IFT43 gene is a rare cause of cranioectodermal dysplasia. This condition is characterized by an elongated head (dolichocephaly) with a prominent forehead and other distinctive facial features; short bones; and abnormalities of certain tissues known as ectodermal tissues, which include the teeth, hair, nails, and skin.
The IFT43 gene mutation involved in cranioectodermal dysplasia leads to production of an abnormally short IFT43 protein, which is likely broken down quickly. Shortage of this component of the IFT-A complex impairs the function of the entire complex, disrupting transport of proteins and materials from the tips of cilia. As a result, assembly and maintenance of cilia is impaired, which leads to a smaller number of cilia and abnormalities in their shape and structure. Although the mechanism is unclear, a loss of normal cilia impedes proper development of bone and other tissues, leading to the features of cranioectodermal dysplasia. Some researchers suggest that disrupted intraflagellar transport prevents signaling through the Sonic Hedgehog pathway, which could impact cell growth and other functions in several tissues throughout the body.
More About This Health ConditionRelated Conditions
Cranioectodermal dysplasia
Health Conditions Related to Genetic Changes
A mutation in the IFT43 gene is a rare cause of cranioectodermal dysplasia. This condition is characterized by an elongated head (dolichocephaly) with a prominent forehead and other distinctive facial features; short bones; and abnormalities of certain tissues known as ectodermal tissues, which include the teeth, hair, nails, and skin.
The IFT43 gene mutation involved in cranioectodermal dysplasia leads to production of an abnormally short IFT43 protein, which is likely broken down quickly. Shortage of this component of the IFT-A complex impairs the function of the entire complex, disrupting transport of proteins and materials from the tips of cilia. As a result, assembly and maintenance of cilia is impaired, which leads to a smaller number of cilia and abnormalities in their shape and structure. Although the mechanism is unclear, a loss of normal cilia impedes proper development of bone and other tissues, leading to the features of cranioectodermal dysplasia. Some researchers suggest that disrupted intraflagellar transport prevents signaling through the Sonic Hedgehog pathway, which could impact cell growth and other functions in several tissues throughout the body.