PDHA1

pyruvate dehydrogenase E1 subunit alpha 1

Normal Function

Health Conditions Related to Genetic Changes

Pyruvate dehydrogenase deficiency

Mutations in the PDHA1 gene are the most common cause of pyruvate dehydrogenase deficiency, accounting for approximately 80 percent of cases of this condition. Pyruvate dehydrogenase deficiency is characterized by a potentially life-threatening buildup of a chemical called lactic acid in the body (lactic acidosis), delayed development, and neurological problems. Dozens of PDHA1 gene mutations have been identified in affected individuals. These mutations have been divided into two groups. One group includes mutations that add or remove DNA building blocks (nucleotides) to the PDHA1 gene (called insertion and deletion mutations, respectively). These types of mutations occur more commonly in affected females than males. The other group includes mutations that change single protein building blocks (amino acids) in the E1 alpha protein or result in a premature stop signal in the instructions for making the protein (called missense and nonsense mutations, respectively). These types of mutations occur in affected males more often than females.

Mutations in the PDHA1 gene associated with pyruvate dehydrogenase deficiency lead to a reduction in the amount of E1 alpha protein or result in an abnormal protein that cannot function properly. The abnormal protein may not be able to interact with E1 beta to form the E1 enzyme or with other factors needed for the E1 enzyme to perform its chemical reaction. A decrease in functional E1 alpha results in reduced pyruvate dehydrogenase complex activity. With decreased function of this complex, pyruvate builds up and is converted, in another chemical reaction, to lactic acid, causing lactic acidosis. In addition, the production of cellular energy is diminished. The brain, which is especially dependent on this form of energy, is severely affected, resulting in the neurological problems associated with pyruvate dehydrogenase deficiency.

More About This Health Condition

Related Conditions

Pyruvate dehydrogenase deficiencyLeigh syndrome

Health Conditions Related to Genetic Changes

Mutations in the PDHA1 gene are the most common cause of pyruvate dehydrogenase deficiency, accounting for approximately 80 percent of cases of this condition. Pyruvate dehydrogenase deficiency is characterized by a potentially life-threatening buildup of a chemical called lactic acid in the body (lactic acidosis), delayed development, and neurological problems. Dozens of PDHA1 gene mutations have been identified in affected individuals. These mutations have been divided into two groups. One group includes mutations that add or remove DNA building blocks (nucleotides) to the PDHA1 gene (called insertion and deletion mutations, respectively). These types of mutations occur more commonly in affected females than males. The other group includes mutations that change single protein building blocks (amino acids) in the E1 alpha protein or result in a premature stop signal in the instructions for making the protein (called missense and nonsense mutations, respectively). These types of mutations occur in affected males more often than females.

Mutations in the PDHA1 gene associated with pyruvate dehydrogenase deficiency lead to a reduction in the amount of E1 alpha protein or result in an abnormal protein that cannot function properly. The abnormal protein may not be able to interact with E1 beta to form the E1 enzyme or with other factors needed for the E1 enzyme to perform its chemical reaction. A decrease in functional E1 alpha results in reduced pyruvate dehydrogenase complex activity. With decreased function of this complex, pyruvate builds up and is converted, in another chemical reaction, to lactic acid, causing lactic acidosis. In addition, the production of cellular energy is diminished. The brain, which is especially dependent on this form of energy, is severely affected, resulting in the neurological problems associated with pyruvate dehydrogenase deficiency.

MedlinePlus Genetics provides information about Leigh syndrome