TERC

telomerase RNA component

Normal Function

Health Conditions Related to Genetic Changes

Dyskeratosis congenita

At least 20 mutations in the TERC gene have been identified in people with dyskeratosis congenita. This disorder is characterized by changes in skin coloring (pigmentation), white patches inside the mouth (oral leukoplakia), and abnormally formed fingernails and toenails (nail dystrophy). People with dyskeratosis congenita have an increased risk of developing several life-threatening conditions, including cancer and a progressive lung disease called pulmonary fibrosis. Many affected individuals also develop a serious condition called aplastic anemia, also known as bone marrow failure, which occurs when the bone marrow does not produce enough new blood cells.

Some of the TERC gene mutations that cause dyskeratosis congenita result in an absent or unstable hTR molecule; others change the way hTR interacts with hTERT or other components of the telomerase enzyme.

TERC gene mutations lead to telomerase dysfunction, impaired maintenance of telomeres, and reduced telomere length. Cells that divide rapidly are especially vulnerable to the effects of shortened telomeres. As a result, people with dyskeratosis congenita may experience a variety of problems affecting quickly dividing cells in the body such as cells of the nail beds, hair follicles, skin, lining of the mouth (oral mucosa), and bone marrow.

Breakage and instability of chromosomes resulting from inadequate telomere maintenance may lead to genetic changes that allow cells to divide in an uncontrolled way, resulting in the development of cancer in some people with dyskeratosis congenita.

More About This Health Condition

Related Conditions

Dyskeratosis congenitaIdiopathic pulmonary fibrosisOther disorders

Health Conditions Related to Genetic Changes

At least 20 mutations in the TERC gene have been identified in people with dyskeratosis congenita. This disorder is characterized by changes in skin coloring (pigmentation), white patches inside the mouth (oral leukoplakia), and abnormally formed fingernails and toenails (nail dystrophy). People with dyskeratosis congenita have an increased risk of developing several life-threatening conditions, including cancer and a progressive lung disease called pulmonary fibrosis. Many affected individuals also develop a serious condition called aplastic anemia, also known as bone marrow failure, which occurs when the bone marrow does not produce enough new blood cells.

Some of the TERC gene mutations that cause dyskeratosis congenita result in an absent or unstable hTR molecule; others change the way hTR interacts with hTERT or other components of the telomerase enzyme.

TERC gene mutations lead to telomerase dysfunction, impaired maintenance of telomeres, and reduced telomere length. Cells that divide rapidly are especially vulnerable to the effects of shortened telomeres. As a result, people with dyskeratosis congenita may experience a variety of problems affecting quickly dividing cells in the body such as cells of the nail beds, hair follicles, skin, lining of the mouth (oral mucosa), and bone marrow.

Breakage and instability of chromosomes resulting from inadequate telomere maintenance may lead to genetic changes that allow cells to divide in an uncontrolled way, resulting in the development of cancer in some people with dyskeratosis congenita.

Several mutations in the TERC gene have been identified in people with the progressive lung disease idiopathic pulmonary fibrosis. This condition causes scar tissue (fibrosis) to build up in the lungs, which makes the lungs unable to transport oxygen into the bloodstream effectively. Mutations in the TERC gene have been found in cases that run in families (familial pulmonary fibrosis) and, less commonly, in isolated (sporadic) cases. Some individuals with idiopathic pulmonary fibrosis due to TERC gene mutations have family members with other features of dyskeratosis congenita (described above), such as aplastic anemia or cancer.

Mutations in the TERC gene reduce or eliminate the function of telomerase, which allows telomeres to become abnormally short as cells divide. The shortened telomeres likely trigger cells that divide rapidly, such as cells that line the inside of the lungs, to stop dividing or to die prematurely. In people with idiopathic pulmonary fibrosis, shorter telomeres are associated with a more severe disease and a quicker decline in lung function. Additional research is needed to confirm how shortened telomeres contribute to the progressive scarring and lung damage characteristic of idiopathic pulmonary fibrosis.

Idiopathic pulmonary fibrosis is a complex disease that is probably caused by a combination of genetic and environmental factors. Studies suggest that many affected people with TERC gene mutations may have also been exposed to environmental risk factors, such as cigarette smoke or certain kinds of dust or fumes. It is possible that mutations in the TERC gene increase a person's risk of developing idiopathic pulmonary fibrosis, and then exposure to certain environmental factors can trigger the disease.

TERC gene mutations have also been found in people with isolated aplastic anemia, a form of bone marrow failure that occurs without the other physical features of dyskeratosis congenita (described above). Researchers suggest that mutations affecting different parts of the telomerase enzyme may account for the absence of these features. Some believe that isolated aplastic anemia caused by TERC gene mutations may actually represent a late-onset form of dyskeratosis congenita in which physical features such as nail dystrophy are mild and may not be noticeable.