ZMYM2

zinc finger MYM-type containing 2

Normal Function

Health Conditions Related to Genetic Changes

8p11 myeloproliferative syndrome

A genetic change involving the ZMYM2 gene causes most cases of 8p11 myeloproliferative syndrome. This condition is characterized by an increased number of white blood cells (myeloproliferative disorder) and the development of lymphoma, a blood-related cancer that causes tumor formation in the lymph nodes. The myeloproliferative disorder usually develops into another form of blood cancer called acute myeloid leukemia. 8p11 myeloproliferative syndrome most commonly results from a rearrangement (translocation) of genetic material between chromosome 13 and chromosome 8. This genetic change fuses part of the ZMYM2 gene on chromosome 13 with part of the FGFR1 gene on chromosome 8. The translocation is found only in cancer cells.

The protein produced from the normal FGFR1 gene can turn on cellular signaling that helps the cell respond to its environment, for example by stimulating cell growth. The protein produced from the fused ZMYM2-FGFR1 gene leads to constant FGFR1 signaling. The uncontrolled signaling promotes continuous cell growth and division, leading to cancer.

More About This Health Condition

Related Conditions

8p11 myeloproliferative syndrome

Health Conditions Related to Genetic Changes

A genetic change involving the ZMYM2 gene causes most cases of 8p11 myeloproliferative syndrome. This condition is characterized by an increased number of white blood cells (myeloproliferative disorder) and the development of lymphoma, a blood-related cancer that causes tumor formation in the lymph nodes. The myeloproliferative disorder usually develops into another form of blood cancer called acute myeloid leukemia. 8p11 myeloproliferative syndrome most commonly results from a rearrangement (translocation) of genetic material between chromosome 13 and chromosome 8. This genetic change fuses part of the ZMYM2 gene on chromosome 13 with part of the FGFR1 gene on chromosome 8. The translocation is found only in cancer cells.

The protein produced from the normal FGFR1 gene can turn on cellular signaling that helps the cell respond to its environment, for example by stimulating cell growth. The protein produced from the fused ZMYM2-FGFR1 gene leads to constant FGFR1 signaling. The uncontrolled signaling promotes continuous cell growth and division, leading to cancer.